Instructions for TIDAL

Introduction

The aim is for this digital tool to facilitate trajectories work and remove barriers to implementing longitudinal research to researchers without specialist statistical backgrounds. It helps guide trajectory modelling and capture clinically meaningful features from mental health trajectories for specific individuals and/or specific groups of people.

Installation and useage

Locally

Please install the R package and launch the Shiny app locally if you want to upload sensitive data. If using R Studio it's recommended to restart your R session before installing.

```
# install.packages("remotes")
remotes::install_github("TIDAL-modelling/TIDAL")
# Note if prompted to update packages you can select option 3/None.
# Updating all packages (option 1) might take a while to run.
library("TIDAL")
# Launch the R Shiny app
launchTIDAL()
# To get documentation for launchTIDAL()
?launchTIDAL
```

Online

https://tidal.shinyapps.io/tidalapp/

To use this tool online please do not upload any sensitive data. Only use the synthetic datasets, described below.

Synthetic datasets

A synthetic dataset is available called "emot_reg_emot_simulated.csv" this is also embedded within the app. Details about this synthetic dataset can be found on GitHub in the /data subfolder here.

Interacting with the app

Overview page

When you launch the app the first page of the app looks like this:

-/Library/Caches/org.R-project.R/R/renv/library/TIDAL-ab1dc934/R-4.1/x86_64-apple-darwin17.0/TIDAL/TIDALapp - Shiny
http://127.0.0.16639 😰 Open in Browser 🛛 🕑
TIDAL Overview Data Preparation Data Exploration Interaction Variable Individual Trajectories
• Default Theme ^O Dark Mode ^O High Contrast ^O Large Font ^O High Contrast & Large Font
TIDAL
Tool to Implement Developmental Analyses of Longitudinal data
Tool to Implement Developmental Analyses of Longitudinal Data
The aim is for this digital tool to facilitate trajectories work and remove barriers to implementing longitudinal research to researchers without specialist statistical backgrounds. The following pages guide trajectory modelling and capture clinically meaningful features from mental health trajectories for specific individuals and/or specific groups of people.
These features will include:
 How mental health is changing over specific periods of time. When mental health is improving or worsening at the fastest rate (points of acceleration). How variable mental health responses are over time within individuals (stability).
Please only use synthetic data if using the application online. Details of this data is available on the <u>TIDAL GitHub repository</u> . To use this tool please read the "Instructions" tab on each page to guide you through the process. In brief the main aims of each page:
Data Preparation
This allows the user to upload a wide format of their longitudinal dataset. Select which columns measure time and the phenotype they want to model trajectories on. Converts the dataframe to long format. Allows the user to download the long format dataset.
Data Exploration
This is the first stage of the trajectory modelling. Here the user either uploads a long format dataset or uses the dataset formatted on the previous page (Data Preparation). They specify the columns relatated to the variables to include in the model. There is a choice of model type and the user can see which model type looks like it best fits their data to explore further.
Interaction Variable
Explore the effect of a categorical or continuous variable on the trajectories.
Individual Trajectories
View trajectories for specific individuals. Choose from a random sample, specific individuals of interest, individuals within a specific variable, eg. a random sample of females only.
W
Funded by The Wellcome Trust and Social Finance, Grant Ref: 226686/Z/22/Z.
This package is provided solely for educational and informational purposes. Users understand and agree that any data uploaded and utilised with this package is done at their own risk. Users are solely responsible for the accuracy, legality, and ethical considerations of the data they upload. Additionally, users are responsible for the interpretation of results obtained through the use of this package. The creators and maintainers of this package shall not be held liable for any consequences arising from the use, interpretation, or implications of the package on the data uploaded.

Please read through this all this information before preceding with the following pages.

Data Preparation page

- Click on the Data Preparation tab. This page is for converting data from a wide format into a long format, which is typically needed for longitudinal analysis. If you already have data in long format then proceed to Data Exploration. However, if you have wide format data or would like to explore the synthetic dataset we have provided embedded with in the app then please continue below.
- Firstly, please read the instructions in the Instructions tab on this page. Either upload your own data (in .csv or .tsv format) or click on "Use demo synthetic data".
- In this demo we will use the synthetic data.

- Select columns for age at each time point. In the synthetic data sets we have 5 time points called "age_t1", "age_t2", "age_t3", "age_t4" and "age_t5". This is the age of the individual at each time point/assessment. Select these columns from the drop down menu as shown in the figure below.
- Then select columns for the questionnaire responses at each time point. In the synthetic data sets we have responses at 5 time points for the Strengths and Difficulties Questionnaire (SDQ). These 5 time points are called "sdq_t1", "sdq_t2", "sdq_t3", "sdq_t4", "sdq_t5". Select these columns from the drop down menu as shown in the figure below.
- There are the options to change the column names for age, time point and the new column made for the variable to model trajectories on.
- There is also the option to impute missing age with the mean age.
- Click on the Output tab to view a preview of the long format dataset, as shown in the figure below. Any warning messages will also be displayed in this Output tab.
- A download button will appear when you have the option to download this data as a .csv in long format. Otherwise you can continue to the next page.

Upload data A preview of the first few colurrows. Explore this data further rows. Explore this data further rows. Explore this data further subject Select column for participant ID: subject subject ge_11 age_12 age_13 age_14 age_15 ged_11 age_12 adg_13 adg_14 adg_15 ged_11 add_12 adg_13 adg_14 adg_15 age_11 adg_12 adg_13 adg_14 adg_15 age age age age age age age age_11 adg_12 adg_13 adg_14 adg_15 Tr590 age_15 Tr590 age_15 Tr590 age_14 Tr590 age_14	age scol 1urther on the ner scol 3.041 0 5.422 2 NA NA 11 0 3.126 2 NA NA 14 0 3.126 2 NA NA 5.142 2 6.989 1 6.989 1 10 2 14 0	Interpretation age score 3.041 0 5.482 2 NA NA 14 0 3.107 4 5.142 2 NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	Select data source.	Instructi	ons Output							
Use demo synthetic data rows. Explore this data further Select column for participant ID: subject subject age_t1 age_t2 age_t1 3.0 Select columns for age at each time point: age_t3 age_t4 age_t5 2 age_t4 11 Select columns for age at each time point: age_t4 age_t6 14 age_t6 14 Select columns for the variable to model trajectories on at each time point eg. depression scores: age_t1 3.1 14 3 age_t5 NM Name of new column for age: age_t5 NM 17590 age_t1 3.1 Name of new column for time point: time_point 17590 age_t3 6.6 17590 age_t4 10 17590 age_t4 10 17590 age_t4 10 17590 age_t4 10 17590 age_t6 10 17590 age_t6 10 17590 age_t6 10 10 10 10 10 17590 age_t6 10 10 10 10 10 10 10 10	age sco 3.041 0 5.482 2 NA 14 14 0 3.104 0 NA 14 14 0 3.107 2 5.482 3.107 6.982 1 6.982 1 14 0 13.107 2 14 0 15 1.10 16 1.00 17 1.10	Interpretation Interpretation Interpretation Interpretatio	Upload data	A preview	of the first few	columns	of this long	formatted data is sl	hown below. Ple	ase click the d	ownload button f	o see all columns
Select column for participant ID: subject ime_point age_ti age_	age score 3.041 0 5.482 2 NA NA 11 0 3.126 2 NA NA 14 0 3.126 2 NA NA 5.142 2 5.432 2 5.442 2 6.969 1 10 2 11 2 12 4	source scorce 3.041 0 5.482 2 NA NA 11 0 14. 0 3.051 2	Use demo synthetic data	rows. Explo	ore this data fur	ther on tl	ne next pag	e "Data Exploration'	".			
subject • 2 age_t1 3.0 Select columns for age at each time point: 2 age_t2 5.4 2 age_t3 age_t4 11 2 age_t4 11 2 age_t4 11 2 age_t3 14 3 age_t4 11 2 age_t4 11 2 age_t4 11 2 age_t4 11 2 age_t4 13 3 age_t4 3.0 3 age_t1 3.1 17580 age_t1 3.1 17590 age_t2 5.1 17590 age_t3 6.5 17590 age_t4 10 17590 age_t4 10 17590 age_t4 10 17590 age_t5 17590 age_t6 10 17590 age_t6 10 17590 age_t6 10 17590 ag	3.041 0 5.482 2 NA NA 11 0 3.126 2 3.126 2	3.041 0 5.482 2 NA NA 11 0 14 0 3.125 2 NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	Select column for participant ID:	subject	time_point	age	score					
2 age_12 54 2 age_12 54 2 age_13 NA age_11 age_14 age_14 2 age_14 11 2 age_15 14 2 age_11 31 age_11 sd_14 sd_91 31 age_11 sd_15 NA Name of new column for age: 17590 age_12 51 age 17590 age_12 51 17590 age_12 51 17590 36 17590 age_12 51 17590 36 17590 age_14 10 17590 36 17590 age_14 10 17590 36 17590 age_14 10 17590 36 175 17590 age_14 10 175 36 175 17590 age_14 10 175 36 175 17590 age_14 10 175 175 36 175 age_15 10	5.482 2 NA NA 11 0 3.126 2 3.126 2 3.126 2 3.126 2 3.127 3.126 3.127 3.126 3.127 3.128 3.129 3.120 3.127 3.128 3.129 3.120 3.120 3.120 3.120 3.120 3.120 3.120 3.120 3.120 3.120 3.120	5.482 2 NA NA 11 0 14 0 3.107 4 5.142 2 6.989 1 10 2 14 4	subject 🔹	2	age_t1	3.041	0					
age_t1 age_t2 age_t3 age_t4 age_t5 2 age_t4 11 age_t1 age_t2 age_t3 age_t4 age_t5 2 age_t4 11 ach time point g. depression scores: 3 age_t6 14 sdq_t1 sdq_t2 sdq_t3 sdq_t4 sdq_t5	NA NA 11 0 14 0 3126 2 NA NA 3124 2 .	NA NA 11 0 14 0 3.107 4 5.142 2 6.989 1 10 2 14 4		2	age_t2	5.482	2					
age_t1 age_t2 age_t3 age_t4 age_t5 2 age_t4 11 2 age_t4 14 2 age_t5 14 3 age_t5 14 3 age_t5 14 3 age_t6 14 3 age_t5 14 3 age_t1 31 31 31 31 31 sdq_t1 sdq_t2 sdq_t3 sdq_t4 sdq_t5 17590 age_t1 31	11 0 14 0 3.126 2 NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	11 0 14 0 3.126 2 NA NA NA 3.107 4 5.142 2 6.988 1 10 2 14 4	elect columns for age at each time point:	2	age_t3	NA	NA					
2 age_t5 14 3 age_t1 3.1 ach time point g, depression scores: 7589 age_t1 3.1 adaptit sdg_t2 sdg_t4 sdg_t5 7589 age_t5 NM age 17590 age_t1 3.1	14 0 3.126 2 NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	14 0 3.126 2 NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	age_t1 age_t2 age_t3 age_t4 age_t5	2	age_t4	11	0					
age age_t1 3.1 age_t1 sdq_t2 sdq_t3 sdq_t4 sdq_t5 lame of new column for age: age lame of new column for ime point: time_point 17590 age_t1 3.1 17590 age_t1 3.1 17590 age_t2 5.1 17590 age_t3 6.5 17590 age_t4 10 17590 age_t5 17590 age_t6 10 17590 age_t6 10 17590 age_t6 10 17590 age_t6 10 17590 age_t6 14	3.126 2 NA NA 5.142 2 6.989 1 10 2 14 4	3.126 2 NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	calact columns for the variable to model trainstaries on at	2	age_t5	14	0					
sdq_t1 sdq_t2 sdq_t3 sdq_t4 sdq_t5 Mame of new column for age: age Mame of new column for time point: time_point T/590 age_t1 3.1 17590 age_t2 5.1 17590 age_t3 6.5 17590 age_t4 10 17590 age_t5 14	NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	each time point eg. depression scores:	3	age_t1	3.126	2					
tame of new column for age: 17589 age_t5 N/ age 17590 age_t1 3.1 age 17590 age_t2 5.1 tame of new column for time point: 17590 age_t3 6.5 time_point 17590 age_t4 10 time_point 17590 age_t5 14	NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	NA NA 3.107 4 5.142 2 6.989 1 10 2 14 4	sda t1 sda t2 sda t3 sda t4 sda t5									
lame of new column for age: 17590 age_t1 3.1 age 17590 age_t2 5.1 lame of new column for time point: 17590 age_t3 6.6 time_point 17590 age_t4 10 time_of new column for time point: 17590 age_t5 14	3.107 4 5.142 2 6.989 1 10 2 14 4	3.107 4 5.142 2 6.989 1 10 2 14 4		17589	age_t5	NA	NA					
age 17590 age_t2 5.1 Name of new column for time point: 17590 age_t3 6.5 time_point 17590 age_t4 10 17590 age_t5 14	5.142 2 6.989 1 10 2 14 4	5.142 2 6.989 1 10 2 14 4	Name of new column for age:	17590	age_t1	3.107	4					
tame of new column for time point: 17590 age_t3 6.5 time_point 17590 age_t4 10 time_point 17590 age_t5 14	6.989 1 10 2 14 4	6.989 1 10 2 14 4	age	17590	age_t2	5.142	2					
time_point 17590 age_t4 10 17590 age_t5 14	10 2 14 4	10 2 14 4	lame of new column for time point:	17590	age_t3	6.989	1					
time_point 17590 age_t5 14	14 4	14 4		17590	age_t4	10	2					
lame of your column for unrichle to model trainctories on.			time_point	17590	age_t5	14	4					
value of new column for valuable to model trajectories on:			ame of new column for variable to model trajectories on:									
score			score									
Impute missing age ?			Impute missing age ?									
🛓 Download .csv			🛓 Download .csv									
5 Download .csv			5 Download .csv									

Data Exploration page

• Click on Data Exploration tab and read the Instructions. Then click on the Output tab.

	~/Library/Caches/org.R-project.R/R/renv/library/TIDAL-ab1dc934/R-4.1/x86_64-apple-darwin17.0/TIDAL/TIDALapp - Shiny
rp://127.0.0.1:6639	Open in Browser Open an Browser O
Instructions	Output
Please only up Either upload a select the colum the plot of the n	Next optimized catasets available on the TIDAL GitHub repository if using the application online. .iong format dataframe (.csv or.tsv) or use the data frame you formatted on the previous page. If you are uploanding a long format dataframe then columns must have unique names. Then mus you wish to use as variables in your model. Inspect the descriptive statistics of your trajectory variable at each time point. Select the model type (eg. linear or a polynomial model) and view mean trajectory against these models. You are also able to add covariates to the model which are plotted with any categorical covariates set to zero in the plot.

 \ast Either upload a long format dataset (which you saved as a .csv from the previous page) or select "Data formatted on the previous page" on the drop down menu.

• In this example we will use the "Data formatted on the previous page"

Select a dataset: Upload a long format dataset Data formatted on previous page	Descriptive Statistics Model Results Plot Scores At Ages Area Under Curve Download Results Descriptive statistics of your variable of interest, eg. depression, for each time point. Rise and scores of your variable of interest by the time/age variable. Have a look to see what type of model you think best fits you date. Use the "Plot" tab to overlay the model on top.

- Select the correct columns from your dataset for "Participant ID", "Variable to model trajectory on", "Variable for age at time point", "Model Type" either Linear, Quadratic, Cubic or Quartic and "random slope terms". There's also the option to convert age from months to years, add covariates or include survey weights. When you have selected these choiced click "Run Model".
- The Descriptive Statistics tab below shows some summary statistics about your data and a plot.

• Model Results tab returns the the code that was run, the fixed and random effects and some text for interpreting those results.

Instructions Output										
Select a dataset:		Descriptiv	e Statistics	Model R	esults PI	ot Score	s At Ages	Area L	Jnder Curve	Download Results
Data formatted on previous page	- Mc	del Form	ula: score ~	age + (1 + a	age subject)				
	Th	e followin	g Ime4 funct	tion is used	to run the m	odel:				
Participant ID variable:			lmer(for	mula = scor	e ~ age + (1 + age su	oject),			
subject	*		REML data	. = FALSE , i = newMode	lData,					
Variable to model trajectory on, eg. depression scores (continuous):			cont	rol = lmer	Control(opt optC	imizer="bob trl=list(ma	yqa", xfun=2e5)))		
score	• Ple	ase see r	nore infomat	ion about th	e "bobyqa"	optimiser <u>he</u>	re. The us	se of altern	ative optimise	ers is not currently supported.
	Th	e argume	nt REML = F/	ALSE indicat	es the mode	l was fitted	by maximu	um likeliho	od.	
variable for age at time point (continuous):	N	umber	of obser	vations	and grou	ips				
age	Th	e number	of observati	ions (measu	rements) is §	55,537 and 1	he numbe	r of groups	s (people) is 1	12,720.
\Box Convert age from months to years ?	Fi	xed Eff	fects							
Variable for time point (categorical):	e	ffect t	erm	estimate	std.error	statistic	2.5 %	97.5 %	p.z	
time_point	•	xed (Intercept)	1.618	0.012	135.279	1.595	1.642	p < 0.001	
Categorical Confounders (optional):	fi	xed a	ige	0.066	0.002	31.950	0.062	0.070	p < 0.001	
	Th	e score at erpret thi	the intercers as the scor	ot is 1.62. Th e at the inte	ie intercept l rcept of age	nere has bee 7.58 is 1.62	en shifted [.]	to the mea	n age of all th	ne assessments which is 7.58. You could
Continuous Confounders (optional):	Ev	ery unit in	crease in ag	e is associat	ted with an i	ncrease of s	core by 0.	07.		
	Th	e model f	it (deviance)	is 208455.0	06, you can o	compare this	s value to o	other simila	ar models to o	determine which model has a better fit.
Model Type:	Ra	andom	Effects							
Linear	• L	evel	Variable1	Variable	2 Variand	e/Covarian	ce SD \	Variance/C	ovariance	
Choose random slope terms:	s	ubject	(Intercept)	NA		1.4	04		1.185	
	s	ubject	(Intercept)	age		0.0	83		0.468	
Lineal	* s	ubject	age	NA		0.0	22		0.149	
Include survey weights	F	esidual	NA	NA		1.5	63		1.250	
Run Model	Th	e intercep tween the	t variance h intercept ar	ow much va nd age is 0.0	riability there 83. The age	e is betweer variance (h	individual ow much v	ls for their /ariability t	intercepts) fo here is betwe	or your model is 1.404. The covariance en individuals for their age) is 0.022.

• The Plot tab shows the model trajectory plotted with the option of overlaying the plot of descriptive data.

• The Scores At Ages tab allows you to explore the trajectory in more ways. By showing the calculated estimates of the quesionnaire score for a given age. Click on the check boxes to select which ages you want to calculate scores for.

• The Area Under Curve (AUC) tab allows you to look at the proportion of time spent with that trait you are modelling. There is a slider bar to select which ages you want to calculate AUC for and the calculated estimates of this is displayed in a table below the plot.

• Finally, you can click on Download Results if you wish to download a pdf report of this. Note that you may have to have LaTeX installed if running this locally. An example of this .pdf report is found on GitHub at https://github.com/TIDAL-modelling/TIDAL/blob/main/Documentation/Data_Exploration.pdf

Instructions Output	
Select a dataset:	Descriptive Statistics Model Results Plot Scores At Ages Area Under Curve Download Results
Data formatted on previous page	When you have run the model, please download a pdf report with the descriptive statistics, model results and plot.
Participant ID variable:	Note the download button will only appear once you have clicked "Run Model" in the side panel.
subject -	🛓 Download report
Variable to model trajectory on, eg. depression scores (continuous):	
score	
Variable for age at time point (continuous):	
age 🔹	
Convert age from months to years	
Variable for time point (categorical):	
time_point -	
Categorical Confounders (optional):	
Continuous Confounders (optional):	
Model Type:	
Linear	
Choose random slope terms:	
Linear •	
Include survey weights	
Run Model	

Interaction Variable page

- When you have your base model and have completed the Data Exploration you can click on the Interaction Variable tab. Using the model made on the previous page explore some variables which may influence the trajectory. Select from a list of variables (ie. column names) of the dataset to explore the trajectory by. If you have included variables as covariates in the previous page a warning message will occur if you try and explore the trajectory further by this variable.
- In the example below we will walk through exploring a Categorical variable to split by, but the same approach can be applied with a Continuous variable.

	Instructions Output
Categorical or continuous variable?	Split by variable analysis
Continuous	Using the model made on the previous page explore some variables which may influence the trajectory. Select from a list of variables is
elect the variable:	column names) of the dataset to explore the trajectory by. If you have included variables as covariates in the previous page a warning
female 🔹	message will occur if you try and explore the trajectory further by this variable.
e aware that it may take a while for the model to run.	
Run Model	

• When you have selected a variable click Run Model and view the results in the Output tab. Similar to the Data Exploration page there are tabs to interact with in the same way including: Plot, Scores At Age, Area Under Curve and Download Results, as seen in the figures below. An example of a download report is available on GitHub at https://github.com/TIDAL-modelling/TIDAL/blob/main/Documentation/Interaction_Variable.pdf.

G

~/Library/Caches/org.R-project.R/R/renv/library/TIDAL-ab1dc934/R-4.1/x86_64-apple-darwin17.0/TIDAL/TIDALapp - Shiny

w Data Preparation

Be aware that it may take a while for the model to run.

Øpen in Brow

Explore a categorical or continuous variable? • Categorical

. . .

O Continuous

Run Model

female

Select the variable:

Exploration interaction variable individual frajectories

Instructions Output

 Model Results
 Piot
 Scores At Ages
 Area Under Curve
 Download Results

 Model Formula:
 score ~ age + (1 + age | subject) + female + age * female

 <t

Fixed Effects

.

effect	term	estimate	std.error	statistic	2.5 %	97.5 %	p.z
fixed	(Intercept)	1.527	0.017	90.961	1.494	1.560	p < 0.001
fixed	age	0.047	0.003	16.441	0.042	0.053	p < 0.001
fixed	female1	0.184	0.024	7.729	0.138	0.231	p < 0.001
fixed	age:female1	0.036	0.004	8.911	0.028	0.044	p < 0.001

The interaction variable you have chosen has been factorised with the lowest level "female0" being the reference or baseline category. For "female0", the score at the intercept is 1.53. The intercept here has been shifted to the mean age of all the assessments which is 7.58. You could interpret this as the score at the intercept for "female0" at 7.58 is 1.53.

For "female0", every unit increase in age is associated with an increase of score by 0.05.

To estimate the effect of different trajectories, you can add the intercept and age estimates to the corresponding interactions and age-interactions to get group specific trajectories.

Further information on how to interpret these results can be found on the TIDAL GitHub training videos section. Please also see the "Plot" tab for visualisation of these results.

Random Effects

Level	Variable1	Variable2	Variance/Covariance	SD Variance/Covariance
subject	(Intercept)	NA	1.394	1.181
subject	(Intercept)	age	0.081	0.464
subject	age	NA	0.022	0.148
Residual	NA	NA	1.563	1.250

Individual Trajectories page

• Using the model specified in the Data Exploration page, we can have a look at individuals trajectories. Please click on the Analysis tab to look at this.

./Library/Caches/org.R-project.R/R/renv/library/TIDAL-ab1dc934/R-4.1/x86_64-apple-darwin17.0/TIDAL/TIDALapp - Shiny	
(127.0.1.6639) 💰 Open in Browser 💮	😏 Republish
DAL Overview Data Preparation Data Exploration Interaction Variable Individual Irajectories	
Instructions Analysis	
xplore individual trajectories using model estimates	
sing the model specified in the Data Exploration page, we can have a look at individuals trajectories.	

• From the drop down option box you can either look at a Random Sample of individuals and select the number of random individuals from the slider.

• Or you can select a specific set of individuals if you know their IDs. This will be a value in the column you specified as the Participant ID.

• Or you can look at A Specific Variable and choose a variable of interest and the level from that variable.

